Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.604
Filtrar
1.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617541

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Proteínas Ribossômicas/genética , Proteínas Nucleares , Ribossomos/genética , Proteínas Mitocondriais
2.
Drug Des Devel Ther ; 18: 1115-1131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618280

RESUMO

Background: The ChaiShao Shugan Formula (CSSGF) is a traditional Chinese medicine formula with recently identified therapeutic value in triple-negative breast cancer (TNBC). This study aimed to elucidate the underlying mechanism of CSSGF in TNBC treatment. Methods: TNBC targets were analyzed using R and data were from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The major ingredients and related protein targets of CSSGF were explored via the Traditional Chinese Medicine Systems Pharmacology database, and an ingredient-target network was constructed via Cytoscape to identify hub genes. The STRING database was used to construct the PPI network. GO and KEGG enrichment analyses were performed via R to obtain the main targets. The online tool Kaplan‒Meier plotter was used to identify the prognostic genes. Molecular docking was applied to the core target genes and active ingredients. MDA-MB-231 and MCF-7 cell lines were used to verify the efficacy of the various drugs. Results: A total of 4562 genes were screened as TNBC target genes. The PPI network consisted of 89 nodes and 845 edges. Our study indicated that quercetin, beta-sitosterol, luteolin and catechin might be the core ingredients of CSSGF, and EGFR and c-Myc might be the latent therapeutic targets of CSSGF in the treatment of TNBC. GO and KEGG analyses indicated that the anticancer effect of CSSGF on TNBC was mainly associated with DNA binding, transcription factor binding, and other biological processes. The related signaling pathways mainly involved the TNF-a, IL-17, and apoptosis pathways. The molecular docking data indicated that quercetin, beta-sitosterol, luteolin, and catechin had high affinity for EGFR, JUN, Caspase-3 and ESR1, respectively. In vitro, we found that CSSGF could suppress the expression of c-Myc or promote the expression of EGFR. In addition, we found that quercetin downregulates c-Myc expression in two BC cell lines. Conclusion: This study revealed the effective ingredients and latent molecular mechanism of action of CSSGF against TNBC and confirmed that quercetin could target c-Myc to induce anti-BC effects.


Assuntos
Catequina , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Luteolina , Simulação de Acoplamento Molecular , Quercetina , Células MCF-7 , Receptores ErbB/genética
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38622359

RESUMO

Community cohesion plays a critical role in the determination of an individual's health in social science. Intriguingly, a community structure of gene networks indicates that the concept of community cohesion could be applied between the genes as well to overcome the limitations of single gene-based biomarkers for precision oncology. Here, we develop community cohesion scores which precisely quantify the community ability to retain the interactions between the genes and their cellular functions in each individualized gene network. Using breast cancer as a proof-of-concept study, we measure the community cohesion score profiles of 950 case samples and predict the individualized therapeutic targets in 2-fold. First, we prioritize them by finding druggable genes present in the community with the most and relatively decreased scores in each individual. Then, we pinpoint more individualized therapeutic targets by discovering the genes which greatly contribute to the community cohesion looseness in each individualized gene network. Compared with the previous approaches, the community cohesion scores show at least four times higher performance in predicting effective individualized chemotherapy targets based on drug sensitivity data. Furthermore, the community cohesion scores successfully discover the known breast cancer subtypes and we suggest new targeted therapy targets for triple negative breast cancer (e.g. KIT and GABRP). Lastly, we demonstrate that the community cohesion scores can predict tamoxifen responses in ER+ breast cancer and suggest potential combination therapies (e.g. NAMPT and RXRA inhibitors) to reduce endocrine therapy resistance based on individualized characteristics. Our method opens new perspectives for the biomarker development in precision oncology.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Redes Reguladoras de Genes , Medicina de Precisão , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Tamoxifeno/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Biomarcadores
4.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612711

RESUMO

Breast cancer is the most common malignancy and its incidence is increasing. It is currently mainly treated by clinical chemotherapy, but chemoresistance remains poorly understood. Prefolded proteins 4 (PFDN4) are molecular chaperone complexes that bind to newly synthesized polypeptides and allow them to fold correctly to stabilize protein formation. This study aimed to investigate the role of PFDN4 in chemotherapy resistance in breast cancer. Our study found that PFDN4 was highly expressed in breast cancer compared to normal tissues and was statistically significantly associated with stage, nodal status, subclasses (luminal, HER2 positive and triple negative), triple-negative subtype and disease-specific survival by TCGA database analysis. CRISPR knockout of PFDN4 inhibited the growth of 89% of breast cancer cell lines, and the triple-negative cell line exhibited a stronger inhibitory effect than the non-triple-negative cell line. High PFDN4 expression was associated with poor overall survival in chemotherapy and resistance to doxorubicin and paclitaxel through the CREBP1/AURKA pathway in the triple-negative MDAMB231 cell line. This study provides insightful evidence for the value of PFDN4 in poor prognosis and chemotherapy resistance in breast cancer patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Aurora Quinase A , Prognóstico , Mama , Células MCF-7
5.
Cell Death Dis ; 15(3): 199, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38604999

RESUMO

Epidermal growth factor receptor (EGFR)-targeted drugs (erlotinib, etc.) are used to treat multiple types of tumours. EGFR is highly expressed in most triple-negative breast cancer (TNBC) patients. However, only a small proportion of TNBC patients benefit from EGFR-targeted drugs in clinical trials, and the resistance mechanism is unclear. Here, we found that PDZ domain containing 1 (PDZK1) is downregulated in erlotinib-resistant TNBC cells, suggesting that PDZK1 downregulation is related to erlotinib resistance in TNBC. PDZK1 binds to EGFR. Through this interaction, PDZK1 promotes EGFR degradation by enhancing the binding of EGFR to c-Cbl and inhibits EGFR phosphorylation by hindering EGFR dimerisation. We also found that PDZK1 is specifically downregulated in TNBC tissues and correlated with a poor prognosis in TNBC patients. In vitro and in vivo functional assays showed that PDZK1 suppressed TNBC development. Restoration of EGFR expression or kinase inhibitor treatment reversed the degree of cell malignancy induced by PDZK1 overexpression or knockdown, respectively. PDZK1 overexpression sensitised TNBC cells to erlotinib both in vitro and in vivo. In conclusion, PDZK1 is a significant prognostic factor for TNBC and a potential molecular therapeutic target for reversing erlotinib resistance in TNBC cells.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Membrana/uso terapêutico
6.
Genome Med ; 16(1): 55, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605363

RESUMO

BACKGROUND: Most primary Triple Negative Breast Cancers (TNBCs) show amplification of the Epidermal Growth Factor Receptor (EGFR) gene, leading to increased protein expression. However, unlike other EGFR-driven cancers, targeting this receptor in TNBC yields inconsistent therapeutic responses. METHODS: To elucidate the underlying mechanisms of this variability, we employ cellular barcoding and single-cell transcriptomics to reconstruct the subclonal dynamics of EGFR-amplified TNBC cells in response to afatinib, a tyrosine kinase inhibitor (TKI) that irreversibly inhibits EGFR. RESULTS: Integrated lineage tracing analysis revealed a rare pre-existing subpopulation of cells with distinct biological signature, including elevated expression levels of Insulin-Like Growth Factor Binding Protein 2 (IGFBP2). We show that IGFBP2 overexpression is sufficient to render TNBC cells tolerant to afatinib treatment by activating the compensatory insulin-like growth factor I receptor (IGF1-R) signalling pathway. Finally, based on reconstructed mechanisms of resistance, we employ deep learning techniques to predict the afatinib sensitivity of TNBC cells. CONCLUSIONS: Our strategy proved effective in reconstructing the complex signalling network driving EGFR-targeted therapy resistance, offering new insights for the development of individualized treatment strategies in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Afatinib/farmacologia , Afatinib/uso terapêutico , Linhagem da Célula , Receptores ErbB , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral
7.
J Nanobiotechnology ; 22(1): 167, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610042

RESUMO

BACKGROUND: Sonodynamic therapy (SDT) has shown promise as a non-invasive cancer treatment due to its local effects and excellent tissue penetration. However, the limited accumulation of sonosensitizers at the tumor site hinders its therapeutic efficacy. Although nanosonosensitizers have improved local tumor accumulation through passive targeting via the enhanced permeability and retention effect (EPR), achieving sufficient accumulation and penetration into tumors remains challenging due to tumor heterogeneity and inaccurate targeting. Bacteria have become a promising biological carrier due to their unique characteristic of active targeting and deeper penetration into the tumor. METHODS: In this study, we developed nanosonosensitizers consisting of sonosensitizer, hematoporphyrin monomethyl ether (HMME), and perfluoro-n-pentane (PFP) loaded poly (lactic-co-glycolic) acid (PLGA) nanodroplets (HPNDs). These HPNDs were covalently conjugated onto the surface of Escherichia coli Nissle 1917 (EcN) using carbodiimine chemistry. EcN acted as an active targeting micromotor for efficient transportation of the nanosonosensitizers to the tumor site in triple-negative breast cancer (TNBC) treatment. Under ultrasound cavitation, the HPNDs were disrupted, releasing HMME and facilitating its uptakes by cancer cells. This process induced reactive oxygen species (ROS)-mediated cell apoptosis and immunogenic cell death (ICD) in vitro and in vivo. RESULTS: Our bacteria-driven nanosonosensitizer delivery system (HPNDs@EcN) achieved superior tumor localization of HMME in vivo compared to the group treated with only nanosonosensitizers. This enhanced local accumulation further improved the therapeutic effect of SDT induced-ICD therapeutic effect and inhibited tumor metastasis under ultrasound stimulation. CONCLUSIONS: Our research demonstrates the potential of this ultrasound-responsive bacteria-driven nanosonosensitizer delivery system for SDT in TNBC. The combination of targeted delivery using bacteria and nanosonosensitizer-based therapy holds promise for achieving improved treatment outcomes by enhancing local tumor accumulation and stimulating ICD.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Morte Celular Imunogênica , Apoptose , Bactérias , Glicóis
8.
Front Endocrinol (Lausanne) ; 15: 1347762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567311

RESUMO

Objective: Hormone receptor (HR)-low/HER2-negative breast cancers (BCs) are more likely to be basal-like BCs, with similar molecular features and gene expression profiles to HR-negative (estrogen receptor <1% or negative and progesterone receptor <1% or negative) BCs. Recently, with the clinical application of adjuvant intensive therapy for triple-negative breast cancer (TNBC), the prognosis of TNBC patients without pathological complete response (pCR) has significantly improved. Therefore, it is necessary to reanalyse the prognostic characteristics of clinically high-risk HR-low/HER2-negative BC. Methods: According to the inclusion and exclusion standards, 288 patients with HR-low/HER2-negative BC and TNBC who received NAC and were followed up between 2015 and 2022 at three breast centres in Hunan Province, China, were enrolled. Inverse probability of treatment weighting (IPTW) was utilized to mitigate imbalances in baseline characteristics between the HR-low/HER2-negative BC group and TNBC group regarding event-free survival (EFS) and overall survival (OS). The primary clinical endpoints were pCR and EFS, while the secondary endpoints included OS, objective response rate (ORR), and clinical benefit rate (CBR). Results: The pCR rate (27.1% vs. 28.0%, P = 1.000), ORR rate (76.9% vs. 78.3%, P = 0.827) and CBR rate (89.7% vs. 96.5%, P = 0.113) after NAC were similar between the HR-low/HER2-negative BC and the TNBC group. EFS in patients with non-pCR from the 2 groups was significantly inferior in comparison to patients with pCR (P = 0.001), and the 3-year EFS was 94.74% (95% CI = 85.21% to 100.00%) and 57.39% (95% CI =43.81% to 75.19%) in patients with pCR and non-pCR from the HR-low/HER2-negative BC group, respectively, and 89.70% (95% CI = 82.20% to 97.90%) and 69.73% (95% CI = 62.51% to 77.77%) in the TNBC patients with pCR and non-pCR, respectively. Conclusions: In the real world, the therapeutic effects of NAC for HR-low/HER2-negative BCs and TNBCs were similar. EFS of patients with non-pCR in the HR-low/HER2-negative BC group was inferior to that of the TNBC group with non-pCR, suggesting that it is necessary to explore new adjuvant intensive therapy strategies for these patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Terapia Neoadjuvante , Prognóstico , Estudos de Coortes , China
9.
Sci Adv ; 10(14): eadj4009, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569025

RESUMO

Triple-negative breast cancer (TNBC) is the deadliest subtype of breast cancer owing to the lack of effective therapeutic targets. Splicing factor 3a subunit 2 (SF3A2), a poorly defined splicing factor, was notably elevated in TNBC tissues and promoted TNBC progression, as confirmed by cell proliferation, colony formation, transwell migration, and invasion assays. Mechanistic investigations revealed that E3 ubiquitin-protein ligase UBR5 promoted the ubiquitination-dependent degradation of SF3A2, which in turn regulated UBR5, thus forming a feedback loop to balance these two oncoproteins. Moreover, SF3A2 accelerated TNBC progression by, at least in part, specifically regulating the alternative splicing of makorin ring finger protein 1 (MKRN1) and promoting the expression of the dominant and oncogenic isoform, MKRN1-T1. Furthermore, SF3A2 participated in the regulation of both extrinsic and intrinsic apoptosis, leading to cisplatin resistance in TNBC cells. Collectively, these findings reveal a previously unknown role of SF3A2 in TNBC progression and cisplatin resistance, highlighting SF3A2 as a potential therapeutic target for patients with TNBC.


Assuntos
Cisplatino , Neoplasias de Mama Triplo Negativas , Humanos , Cisplatino/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Processamento Alternativo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
10.
BMC Cancer ; 24(1): 440, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594636

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a life-threatening subtype of breast cancer with limited treatment options. Therefore, this network meta-analysis (NMA) aimed to evaluate and compare the effect of various neoadjuvant chemotherapy (NCT) options on the long-term survival of patients with TNBC. METHODS: PubMed, Embase, Medline, Cochrane Library, Web of Science, and major international conference databases were systematically searched for randomized controlled trials (RCTs) on the efficacy of various NCT options in patients with TNBC. Searches were performed from January 2000 to June 2023. Study heterogeneity was assessed using the I2 statistic. Hazard ratios (HRs) and 95% confidence intervals (CIs) were used to evaluate disease-free survival (DFS) and overall survival (OS). Odds ratios (ORs) and 95% CIs were used to evaluate the pathologic complete response (pCR). The primary outcome was DFS. RESULTS: We conducted an NMA of 21 RCTs involving 8873 patients with TNBC. Our study defined the combination of anthracyclines and taxanes as the preferred treatment option. On this basis, the addition of any of the following new drugs is considered a new treatment option: bevacizumab (B), platinum (P), poly-ADP-ribose polymerase inhibitors (PARPi), and immune checkpoint inhibitor (ICI). Based on the surface under the cumulative ranking curve (SUCRA) values, the top three SUCRA area values of DFS were taxanes, anthracycline, and cyclophosphamide (TAC; 89.23%); CT (84.53%); and B (81.06%). The top three SUCRA area values of OS were CT (83.70%), TAC (62.02%), and B-containing regimens (60.06%). The top three SUCRA area values of pCR were B + P-containing regimens (82.7%), ICI + P-containing regimens (80.2%), and ICI-containing regimens (61.8%). CONCLUSIONS: This NMA showed that standard chemotherapy is a good choice with respect to long-term survival. Moreover, B associated with P-containing regimens is likely to be the optimal treatment option for neoadjuvant TNBC in terms of pCR.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Terapia Neoadjuvante , Metanálise em Rede , Taxoides/uso terapêutico , Ciclofosfamida/uso terapêutico , Antibióticos Antineoplásicos/uso terapêutico , Antraciclinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
11.
Cancer Lett ; 589: 216820, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574883

RESUMO

One in three Triple Negative Breast Cancer (TNBC) is Homologous Recombination Deficient (HRD) and susceptible to respond to PARP inhibitor (PARPi), however, resistance resulting from functional HR restoration is frequent. Thus, pharmacologic approaches that induce HRD are of interest. We investigated the effectiveness of CDK-inhibition to induce HRD and increase PARPi sensitivity of TNBC cell lines and PDX models. Two CDK-inhibitors (CDKi), the broad range dinaciclib and the CDK12-specific SR-4835, strongly reduced the expression of key HR genes and impaired HR functionality, as illustrated by BRCA1 and RAD51 nuclear foci obliteration. Consequently, both CDKis showed synergism with olaparib, as well as with cisplatin and gemcitabine, in a range of TNBC cell lines and particularly in olaparib-resistant models. In vivo assays on PDX validated the efficacy of dinaciclib which increased the sensitivity to olaparib of 5/6 models, including two olaparib-resistant and one BRCA1-WT model. However, no olaparib response improvement was observed in vivo with SR-4835. These data support that the implementation of CDK-inhibitors could be effective to sensitize TNBC to olaparib as well as possibly to cisplatin or gemcitabine.


Assuntos
Antineoplásicos , Piperazinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Gencitabina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral
12.
Eur J Med Chem ; 270: 116367, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581732

RESUMO

Breast cancer is one of the most common female malignant tumors, with triple-negative breast cancer (TNBC) being the most specific, highly invasive, metastatic and associated with a poor prognosis. Our previous study showed that the natural product ganoderic acid A (GAA) has a certain affinity for MDM2. In this study, two series of novel GAA PROTACs C1-C10 and V1-V10 were designed and synthesized for the treatment of breast cancer. The antitumor activity of these compounds was evaluated against four human tumor cell lines (MCF-7, MDA-MB-231, SJSA-1, and HepG2). Among them, V9 and V10 showed stronger anti-proliferative effects against breast cancer cells, and V10 showed the best selectivity in MDA-MB-231 cells (TNBC), which was 5-fold higher than that of the lead compound GAA. Preliminary structure-activity analysis revealed that V-series GAA PROTACs had better effects than C-series, and the introduction of 2O-4O PEG linkers could significantly improve the antitumor activity. Molecular docking, surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), and Western blot researches showed that both V9 and V10 could bind with MDM2, and degrade the protein through the ubiquitin-proteasome system. Molecular dynamics simulation (MD) revealed that V10 is a bifunctional molecule that can bind to von Hippel-Lindau (VHL) at one end and target MDM2 at the other. In addition, V10 promoted the upregulation of p21 in p53-mutant MDA-MB-231 cells, and induced apoptosis via down-regulation of the bcl-2/bax ratio and the expression of cyclin B1. Finally, in vivo experiments showed that, V10 also exhibited good tumor inhibitory activity in xenografted TNBC zebrafish models, with an inhibition rate of 27.2% at 50 µg/mL. In conclusion, our results suggested that V10 has anti-tumor effects on p53-mutant breast cancer in vitro and in vivo, and may be used as a novel lead compound for the future development of TNBC.


Assuntos
Ácidos Heptanoicos , Lanosterol/análogos & derivados , Proteínas Proto-Oncogênicas c-mdm2 , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/metabolismo , Simulação de Acoplamento Molecular , Peixe-Zebra/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Apoptose
13.
Front Immunol ; 15: 1366197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601156

RESUMO

Introduction: Chemotherapy remains the mainstay treatment for triple-negative breast cancer (TNBC) due to the lack of specific targets. Given a modest response of immune checkpoint inhibitors in TNBC patients, improving immunotherapy is an urgent and crucial task in this field. CD73 has emerged as a novel immunotherapeutic target, given its elevated expression on tumor, stromal, and specific immune cells, and its established role in inhibiting anti-cancer immunity. CD73-generated adenosine suppresses immunity by attenuating tumor-infiltrating T- and NK-cell activation, while amplifying regulatory T cell activation. Chemotherapy often leads to increased CD73 expression and activity, further suppressing anti-tumor immunity. While debulking the tumor mass, chemotherapy also enriches heterogenous cancer stem cells (CSC), potentially leading to tumor relapse. Therefore, drugs targeting both CD73, and CSCs hold promise for enhancing chemotherapy efficacy, overcoming treatment resistance, and improving clinical outcomes. However, safe and effective inhibitors of CD73 have not been developed as of now. Methods: We used in silico docking to screen compounds that may be repurposed for inhibiting CD73. The efficacy of these compounds was investigated through flow cytometry, RT-qPCR, CD73 activity, cell viability, tumorsphere formation, and other in vitro functional assays. For assessment of clinical translatability, TNBC patient-derived xenograft organotypic cultures were utilized. We also employed the ovalbumin-expressing AT3 TNBC mouse model to evaluate tumor-specific lymphocyte responses. Results: We identified quercetin and luteolin, currently used as over-the-counter supplements, to have high in silico complementarity with CD73. When quercetin and luteolin were combined with the chemotherapeutic paclitaxel in a triple-drug regimen, we found an effective downregulation in paclitaxel-enhanced CD73 and CSC-promoting pathways YAP and Wnt. We found that CD73 expression was required for the maintenance of CD44highCD24low CSCs, and co-targeting CD73, YAP, and Wnt effectively suppressed the growth of human TNBC cell lines and patient-derived xenograft organotypic cultures. Furthermore, triple-drug combination inhibited paclitaxel-enriched CSCs and simultaneously improved lymphocyte infiltration in syngeneic TNBC mouse tumors. Discussion: Conclusively, our findings elucidate the significance of CSCs in impairing anti-tumor immunity. The high efficacy of our triple-drug regimen in clinically relevant platforms not only underscores the importance for further mechanistic investigations but also paves the way for potential development of new, safe, and cost-effective therapeutic strategies for TNBC.


Assuntos
Antígeno CD47 , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Flavonoides/farmacologia , Luteolina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Paclitaxel/uso terapêutico , Quercetina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Antígeno CD47/antagonistas & inibidores
14.
J Exp Clin Cancer Res ; 43(1): 115, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627816

RESUMO

BACKGROUND: Chemoresistance and immunosuppression are two major obstacles in the current anti-cancer treatments. This study investigates the involvements of a CCAAT enhancer binding protein delta (CEBPD)/vesicle associated membrane protein 3 (VAMP3) axis in paclitaxel (PTX) resistance and immune evasion in triple-negative breast cancer (TNBC). METHODS: PTX resistance-related genes were screened by bioinformatics. CEBPD and VAMP3 expression in clinical TNBC samples was examined by immunohistochemistry. Three PTX-resistant TNBC cell lines (MDA-MB-231/PTX, MDA-MB-468/PTX and MDA-MB-453/PTX) were generated, and their drug resistance was analyzed. Autophagy of cells was analyzed by immunofluorescence staining. Interaction between CEBPD and VAMP3 promoter was identified by immunoprecipitation and luciferase assays. The extracellular expression of programmed cell death-ligand 1 (PD-L1) in TNBC cells was detected. Extracellular vesicles (EVs) from TNBC cells were isolated to examine their effects on CD8+ T cell exhaustion. RESULTS: CEBPD and VAMP3 were upregulated in chemo-resistant tissue samples and in PTX-resistant TNBC cells. The CEBPD downregulation enhanced PTX sensitivity of cells. However, further upregulation of VAMP3 in cells restored PTX resistance, which was likely due to the activation of autophagy, as the autophagy antagonist chloroquine enhanced PTX sensitivity of cells. CEBPD was found to bind to the VAMP3 promoter to activate its transcription. The CEBPD/VAMP3 axis also increased the PD-L1 expression in the conditioned medium of TNBC cells. The TNBC cell-derived EVs increased the exhaustion of co-cultured CD8+ T cells. CONCLUSION: This study provides novel evidence that CEBPD plays a key role in enhancing PTX resistance in TNBC cells across various subtypes through VAMP3-mediated autophagy activation. Additionally, the CEBPD/VAMP3 axis also increases extracellular PD-L1 level, delivered by cancer cell-derived EVs, to suppress CD8+ T cell-mediated anti-tumor immune response. These significant observations may provide new insights into the treatment of TNBC, suggesting CEBPD and VAMP3 as promising targets to overcome treatment resistance.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína 3 Associada à Membrana da Vesícula , Proteína delta de Ligação ao Facilitador CCAAT , Antígeno B7-H1/genética , Antígeno B7-H1/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Paclitaxel/farmacologia
15.
J Pathol Clin Res ; 10(3): e12371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627977

RESUMO

The efficacy of pembrolizumab monotherapy versus chemotherapy increased with increasing programmed death ligand 1 (PD-L1) expression, as quantified by combined positive score (CPS; PD-L1 expression on both tumour cells and immune cells) in patients with previously treated metastatic triple-negative breast cancer (mTNBC) in the phase 3 KEYNOTE-119 study. This exploratory analysis was conducted to determine whether the expression of PD-L1 on tumour cells contributes to the predictive value of PD-L1 CPS in mTNBC. PD-L1 expression in tumour samples was assessed using PD-L1 IHC 22C3 pharmDx and quantified using both CPS and tumour proportion score (TPS; PD-L1 expression on tumour cells alone). Calculated immune cell density (CID) was defined as CPS minus TPS. The ability of each scoring method (CPS, TPS, and CID) to predict clinical outcomes with pembrolizumab was evaluated. With pembrolizumab, the area under the receiver operating characteristic curve was 0.69 (95% CI = 0.58-0.80) for CPS, 0.55 (95% CI = 0.46-0.64) for TPS, and 0.67 (95% CI = 0.56-0.77) for CID. After correction for cutoff prevalence, CPS performed as well as, if not better than, CID with respect to predicting objective response rate, progression-free survival, and overall survival. Data from this exploratory analysis suggest that, although PD-L1 expression on immune cells alone is predictive of response to programmed death 1 blockade in mTNBC, adding tumour PD-L1 expression assessment (i.e. CPS, which combines immune cell and tumour cell PD-L1 expression) may improve prediction. PD-L1 CPS thus remains an effective and broadly applicable uniform scoring system for enriching response to programmed death 1 blockade with pembrolizumab in mTNBC as well as other tumour types.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Antígeno B7-H1/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Intervalo Livre de Progressão , Biomarcadores Tumorais/metabolismo
16.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611749

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with a high degree of malignancy and poor prognosis. Tumor-associated macrophages (TAMs) have been identified as significant contributors to the growth and metastasis of TNBC through the secretion of various growth factors and chemokines. Salvianolic acid A (SAA) has been shown to have anti-cancer activities. However, the potential activity of SAA on re-polarized TAMs remains unclear. As there is a correlation between the TAMs and TNBC, this study investigates the effect of SAA on TAMs in the TNBC microenvironment. For that purpose, M2 TAM polarization was induced by two kinds of TNBC-conditioned medium (TNBC-TCM) in the absence or presence of SAA. The gene and protein expression of TAM markers were analyzed by qPCR, FCM, IF, ELISA, and Western blot. The protein expression levels of ERK and p-ERK in M2-like TAMs were analyzed by Western blot. The migration and invasion properties of M2-like TAMs were analyzed by Transwell assays. Here, we demonstrated that SAA increased the expression levels of CD86, IL-1ß, and iNOS in M2-like TAMs and, conversely, decreased the expression levels of Arg-1 and CD206. Moreover, SAA inhibited the migration and invasion properties of M2-like TAMs effectively and decreased the protein expression of TGF-ß1 and p-ERK in a concentration-dependent manner, as well as TGF-ß1 gene expression and secretion. Our current findings for the first time demonstrated that SAA inhibits macrophage polarization to M2-like TAMs by inhibiting the ERK pathway and promotes M2-like TAM re-polarization to the M1 TAMs, which may exert its anti-tumor effect by regulating M1/M2 TAM polarization. These findings highlight SAA as a potential regulator of M2 TAMs and the possibility of utilizing SAA to reprogram M2 TAMs offers promising insights for the clinical management of TNBC.


Assuntos
Ácidos Cafeicos , Lactatos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fator de Crescimento Transformador beta1 , Microambiente Tumoral , Macrófagos Associados a Tumor
17.
Molecules ; 29(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611925

RESUMO

Breast cancer stands as the most prevalent type of tumor and a significant contributor to cancer-related deaths. Among its various subtypes, triple-negative breast cancer (TNBC) presents the worst prognosis due to its aggressive nature and the absence of effective treatments. Crotoxin, a protein found in the venom of Crotalus genus snakes, has demonstrated notable antitumor activity against aggressive solid tumors. However, its application has been hindered by substantial toxicity in humans. In efforts to address this challenge, Crotoxin B-derived peptides were synthesized and evaluated in vitro for their antitumor potential, leading to the discovery of 3-NAntC. Treatment with 3-NAntC at 1 µg/mL for 72 h notably reduced the viability of MDA-MB-231 cells to 49.0 ± 17.5% (p < 0.0001), while exhibiting minimal impact on the viability of HMEC cells (98.2 ± 13.8%) under the same conditions. Notably, 3-NAntC displayed superior antitumoral activity in vitro compared to cisplatin and exhibited a similar effect to doxorubicin. Further investigation revealed that 3-NAntC decreased the proliferation of MDA-MB-231 cells and induced G2/M phase arrest. It primarily prompted optimal cell death by apoptosis, with a lower incidence of the less desirable cell death by necrosis in comparison to doxorubicin. Additionally, 3-NAntC demonstrated low LDH release, and its cytotoxicity remained unaffected by the autophagy inhibitor 3-MA. In an in vivo zebrafish model, 3-NAntC exhibited excellent tolerability, showing no lethal effects and a low rate of malformations at high doses of up to 75 mg/mL. Overall, 3-NAntC emerges as a novel synthetic peptide with promising antitumor effects in vitro against TNBC cells and low toxicity in vivo.


Assuntos
Crotoxina , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Crotoxina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Células MDA-MB-231 , Peixe-Zebra , Doxorrubicina , Peptídeos/farmacologia
18.
Syst Rev ; 13(1): 100, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576013

RESUMO

BACKGROUND: Breast cancer incidence has been on the rise significantly in the Asian population, occurring at an earlier age and a later stage. The potential predictive value of molecular subtypes, biomarkers, and genetic variations has not been deeply explored in the Asian population. This study evaluated the effect of molecular subtype classification and the presence or absence of biomarkers and genetic variations on pathological complete response (pCR) after neoadjuvant treatment in Asian breast cancer patients. METHODS: A systematic search was conducted in MEDLINE (PubMed), Science Direct, Scopus, and Cochrane Library databases. Studies were selected if they included Asian breast cancer patients treated with neoadjuvant chemotherapy and contained data for qualitative or quantitative analyses. The quality of the included studies was assessed using the Newcastle Ottawa Scale. Following the random effects model, pooled odds ratios or hazard ratios with 95% confidence intervals for pCR were analysed using Review Manager Software. Heterogeneity between studies was assessed using Cochran's Q-test and I2 test statistics. RESULTS: In total, 19,708 Asian breast cancer patients were pooled from 101 studies. In the neoadjuvant setting, taxane-anthracycline (TA) chemotherapy showed better pCR outcomes in triple-negative breast cancer (TNBC) (p<0.0001) and human epidermal growth factor receptor 2 enriched (HER2E) (p<0.0001) than luminal breast cancer patients. Similarly, taxane-platinum (TP) chemotherapy also showed better pCR outcomes in TNBC (p<0.0001) and HER2E (p<0.0001). Oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative, HER2-positive and high Ki-67 were significantly associated with better pCR outcomes when treated with either TA or TP. Asian breast cancer patients harbouring wildtype PIK3CA were significantly associated with better pCR outcomes when treated with TA in the neoadjuvant setting (p=0.001). CONCLUSIONS: In the neoadjuvant setting, molecular subtypes (HER2E and TNBC), biomarkers (ER, PR, HER2, HR, Ki-67, nm23-H1, CK5/6, and Tau), and gene (PIK3CA) are associated with increased pCR rates in Asian breast cancer patients. Hence, they could be further explored for their possible role in first-line treatment response, which can be utilised to treat breast cancer more efficiently in the Asian population. However, it needs to be further validated with additional powered studies. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42021246295.


Assuntos
Neoplasias da Mama , Hidrocarbonetos Aromáticos com Pontes , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Antígeno Ki-67/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Taxoides/uso terapêutico , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/uso terapêutico , Classe I de Fosfatidilinositol 3-Quinases/uso terapêutico , Variação Genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
19.
Sci Adv ; 10(14): eadj7540, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579004

RESUMO

Fewer than 20% of triple-negative breast cancer patients experience long-term responses to mainstay chemotherapy. Resistant tumor subpopulations use alternative metabolic pathways to escape therapy, survive, and eventually recur. Here, we show in vivo, longitudinal metabolic reprogramming in residual disease and recurrence of triple-negative breast cancer xenografts with varying sensitivities to the chemotherapeutic drug paclitaxel. Optical imaging coupled with metabolomics reported an increase in non-glucose-driven mitochondrial metabolism and an increase in intratumoral metabolic heterogeneity during regression and residual disease in resistant MDA-MB-231 tumors. Conversely, sensitive HCC-1806 tumors were primarily reliant on glucose uptake and minimal changes in metabolism or heterogeneity were observed over the tumors' therapeutic life cycles. Further, day-matched resistant HCC-1806 tumors revealed a higher reliance on mitochondrial metabolism and elevated metabolic heterogeneity compared to sensitive HCC-1806 tumors. Together, metabolic flexibility, increased reliance on mitochondrial metabolism, and increased metabolic heterogeneity are defining characteristics of persistent residual disease, features that will inform the appropriate type and timing of therapies.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias de Mama Triplo Negativas , Humanos , 60645 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Imagem Óptica , Linhagem Celular Tumoral
20.
Artigo em Inglês | MEDLINE | ID: mdl-38528388

RESUMO

The conventional therapeutic treatment of triple-negative breast cancer (TNBC) is negatively influenced by the development of tumor cell drug resistant, and systemic toxicity of therapeutic agents due to off-target activity. In accordance with research findings, nanoparticles (NPs) responsive to the tumor microenvironment (TME) have been discovered for providing opportunities to selectively target tumor cells via active targeting or Enhanced Permeability and Retention (EPR) effect. The combination of the TME control and therapeutic NPs offers promising solutions for improving the prognosis of the TNBC because the TME actively participates in tumor growth, metastasis, and drug resistance. The NP-based systems leverage stimulus-responsive mechanisms, such as low pH value, hypoxic, excessive secretion enzyme, concentration of glutathione (GSH)/reactive oxygen species (ROS), and high concentration of Adenosine triphosphate (ATP) to combat TNBC progression. Concurrently, NP-based stimulus-responsive introduces a novel approach for drug dosage design, administration, and modification of the pharmacokinetics of conventional chemotherapy and immunotherapy drugs. This review provides a comprehensive examination of the strengths, limitations, applications, perspectives, and future expectations of both novel and traditional stimulus-responsive NP-based drug delivery systems for improving outcomes in the medical practice of TNBC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Sistemas de Liberação de Fármacos por Nanopartículas , Sistemas de Liberação de Medicamentos , Nanomedicina , Microambiente Tumoral , Nanopartículas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...